Baumgartner's conjecture and bounded forcing axioms
نویسندگان
چکیده
We study the spectrum of forcing notions between the iterations of σ-closed followed by ccc forcings and the proper forcings. This includes the hierarchy of α-proper forcings for indecomposable countable ordinals α, the Axiom A forcings and forcings completely embeddable into an iteration of a σ-closed followed by a ccc forcing. For the latter class, we present an equivalent characterization in terms of Baumgartner’s Axiom A. This resolves a conjecture of Baumgartner from the 1980s. We also study the bounded forcing axioms for the hierarchy of αproper forcings. Following ideas of Shelah we separate them for distinct countable indecomposable ordinals.
منابع مشابه
Bounded Forcing Axioms and Baumgartner’s Conjecture
We study the spectrum of forcing notions between the iterations of σ-closed followed by ccc forcings and the proper forcings. This includes the hierarchy of α-proper forcings for indecomposable countable ordinals α as well as the Axiom A forcings. We focus on the bounded forcing axioms for the hierarchy of αproper forcings. Following ideas of Shelah we separate them for distinct countable indec...
متن کاملOn the strength of PFA I∗†
Building on the work of Schimmerling ([11]) and Steel ([17]), we show that the failure of square principle at a singular strong limit cardinal implies that there is a non-tame mouse. This is the first step towards getting a model of ADR + “Θ is regular” from PFA via the core model induction. One of the wholly grails of inner model program has been determining the exact consistency strength of f...
متن کاملHierarchies of Forcing Axioms, the Continuum Hypothesis and Square Principles
I analyze the hierarchies of the bounded and the weak bounded forcing axioms, with a focus on their versions for the class of subcomplete forcings, in terms of implications and consistency strengths. For the weak hierarchy, I provide level-by-level equiconsistencies with an appropriate hierarchy of partially remarkable cardinals. I also show that the subcomplete forcing axiom implies Larson’s o...
متن کاملForcing axioms and projective sets of reals
This paper is an introduction to forcing axioms and large cardinals. Specifically, we shall discuss the large cardinal strength of forcing axioms in the presence of regularity properties for projective sets of reals. The new result shown in this paper says that ZFC + the bounded proper forcing axiom (BPFA) + “every projective set of reals is Lebesgue measurable” is equiconsistent with ZFC + “th...
متن کاملBounded forcing axioms and the continuum
We show that bounded forcing axioms (for instance, the Bounded Proper Forcing Axiom and the Bounded Semiproper Forcing Axiom) are consistent with the existence of (!2; !2)-gaps and thus do not imply the Open Coloring Axiom. They are also consistent with Jensen’s combinatorial principles for L at the level !2, and therefore with the existence of an !2-Suslin tree. We also show that the axiom we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ann. Pure Appl. Logic
دوره 164 شماره
صفحات -
تاریخ انتشار 2013